

Stockton Unified School District EDISON HIGH SCHOOL Home of the Vikings

Essential Outcomes Chart: What is it we expect students to learn?

NEW CURRICULUM FOR 20-21!!!! THIS DOCUMENT IS A WORK IN PROGRESS!

GRADE:	10-12	SUBJECT:	Physics	SEMESTER:	1 & 2	TEAM MEMBERS:	Dr. Clark and Dr. Wharry and (Ms. Carranza)
--------	-------	----------	---------	-----------	-------	---------------	---

	Instructional Segment 0: Science Skills										
Instructional Segment 0 Science SkillsSEP 1-6	E.O. 0 The Scientific Method SEP 1, SEP 2, SEP 3, SEP 4, SEP 5, SEP 6, SEP 7, SEP 8 Students will carry out the steps of the Scientific Method through Investigation & Experimentation including: designing experiments, creating	Students can plan & conduct an investigation individually & collaboratively to produce data to serve as the basis for evidence, in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, time), and	Common Content Key Terms or Vocabulary for each standard: • Variable: Independent & Dependent • Hypothesis • Data • Observation Academic Vocabulary • Describe • Compare • Contrast • Differentiate • Explain Focused note taking Paragraph Summaries • CER Organizer • CER Summary	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER(Claim, Evidence, Reasoning)/ Summary Paragraphs • Differentiated Critical Reading • Inquiry Labs • Lab Reports • Common Formative Assessments • Common	Quarter 1 & Ongoing during the Course	 Extension Activities / HONOR'S Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs Graph Analysis using AVID LENSES Design a Science Experiment CER: Claim Evidence & 					

	hypotheses, collecting & analyzing data, then developing conclusions based on the data.	refine the design accordingly. Engage in trial and error. Through CER summary paragraphs, experimental design, lab analysis, evaluations, & process activities.	Differentiated Critical Reading Strategies Steps of the Scientific Method Microscope Technique Metric Measurement using rulers, balances and glassware. Conduct /Complete: • measurement • Data Collection • Data Analysis including finding averages • sources of error • Graph data using various forms of graphs	District Summative Assessments		Reasoning Data Analysis • POGIL: Process • oriented guided inquiry learning
--	---	---	--	--------------------------------------	--	--

Segment 1: Forces and Motion

			1 Forces and Motion	Students make predict Laws. Students mathe changes in motion rela investigate collisions in engineering challenge	tions using Newton's matically describe h ate to forces. They n Earth's crust and in	s ow n an	
	STANDARD DESCRIPTION	EXAM RIGO	IPLE OR	PREREQUISITE / CONCURRENT / EXISTING SKILLS	COMMON ASSESSMENT	WHEN TAUGHT ?	EXTENSION STANDARDS
	What is the essential standard to be learned? Describe in student-friendly vocabulary.	What o profic student look li Provid example descrip	does V cient t work s ike? de an e and/or ption.	What prior / concurrent / existing knowledge, skills, and/or vocabulary is/are needed for a student to master this standard?	What assessment(s) will be used to measure student mastery?	When will this standard be taught?	What will we do when students have learned the essential standard(s)?
E.O. 1 Newton's 2nd Law	PS2-1 Analyze data to support the claim that Newton's second law of motion describes the	EXAMPLE Calculate given m an calculate a F remains	$ \begin{array}{ccc} & C \\ & V \\ & F_{net} \\ & nd a \rightarrow \\ & a \text{ where} \\ & constant \end{array} $	Content Vocabulary/Concepts: Force Free-body diagram Newton's first law of motion	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • Summary	Semester 1	 Extension Activities Projects that are standard specific Enrichment activities Additional literature readings

	mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.	like gravity: moving down ramp, falling	 Inertia Equilibrium Net force Newton's second law of motion Weight Newton's third law Static and kinetic friction 	Paragraphs, Inquiry Labs Lab Reports Formative Assessments Summative Assessments SUSD Common: Common District Lab Activity: F=ma (Vernier equipment) Friction Lab (Vernier equipment)		related to the standard • Virtual Labs
E.O. 2 Students mathematically describe how changes in motion relate to forces.	Momentum PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes	EXAMPLE: Research, drawing info from different sources → Essay on the science behind: Helmets, seatbelts, airbags	 Content Vocabulary/Concepts: Momentum Impulse Impulse-momentum theorem Conservation of momentum Closed and Isolated systems Law of conservation of momentum Recoil Elastic and inelastic collision Impulse-momentum theorem 	 Informal & Formal Assessments Student Portfolios & or Interactive Notebooks Summary Paragraphs, Inquiry Labs Lab Reports Formative Assessments Summative Assessments SUSD Curriculum Office: Collision activities (using metal balls) Explosion (dynamic carts) 	Semester 1	 Extension Activities Projects that are standard specific Enrichment activities Additional literature readings related to the standard Virtual Labs

	the force on a macroscopic object during a collision.			 (Vernier equipment) Eggdrop – parachute, cushioning 		
		Segm	ent 2: Forces at a Dis	stance	1	
		Forces a Distant	Students investigate g electromagnetic force mathematically. They orbiting objects in the the macroscopic prop microscopic electroma	gravitational and s and describe them predict the motion of solar system. They li erties of materials to agnetic attractions.	ink	
	STANDARD DESCRIPTION	EXAMPLE RIGOR	PREREQUISITE / CONCURRENT / EXISTING SKILLS	COMMON ASSESSMENT	WHEN TAUGHT ?	EXTENSION STANDARDS
	What is the essential standard to be learned? Describe in student-friendly vocabulary.	What does proficient student work look like? Provide an example and/or description.	What prior / concurrent / existing knowledge, skills, and/or vocabulary is/are needed for a student to master this standard?	What assessment(s) will be used to measure student mastery?	When will this standard be taught?	What will we do when students have learned the essential standard(s)?
E.O. 3	[PS 2-4] Use mathematical representation of Newton's Law of Gravitation to describe and predict the gravitational	Student can a. Apply the proportional relationship of the law of universal gravitation, $F =$ Gm_1m_2/d^2 . b. Explain why a	 Vocabulary/Concepts: Uniform circular motion Gravitational force Law of Universal Gravitation Planetary Motion 	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER(Claim, Evidence,	Semester 1	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature

Gravitation	forces between objects.	spaceship in a stable circular orbit is in free fall and why a person in that spaceship experiences weightlessness. c. Use Newton's second law and the law of universal gravitation to show why all objects near the surface of the earth fall with the same constant acceleration. Through CER summary paragraphs, lab analysis, & process activities.		Reasoning)/ Summary Paragraphs • Differentiated Critical Reading • Inquiry Labs • Lab Reports • Common Formative Assessments • Common District Summative Assessments		readings related to the standard Virtual Labs Models POGIL: <i>Process oriented</i> <i>guided-inquiry</i> <i>learning</i> CER: Claim Evidence & Reasoning Data Analysis
E.O. 4 Electrostatic Forces	[PS 2-4] Use mathematical representation of Coulomb's Law to describe and predict the electrostatic forces between objects.	The student will demonstrate the ability to identify kinds of electric charges, analyze interactions between two charged objects, and describe electric fields.	Content Vocabulary/Concepts: • charge • conduction • induction • Electrostatics • Electric field • Coulomb's Law Academic Vocabulary • Describe • Define • Calculate	Informal & Formal Assessments • Student Portfolios &/or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical Reading • Inquiry Labs	Semester 1	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs Models POGIL: Process-orient

Through CER summary paragraphs, lab analysis, & process activities.	 Analyze Differentiate Apply Focused note taking Paragraph Summaries CER Organizer CER Summary Differentiated Critical Reading Strategies Problem Solving Graphic Organizers 	 Lab Reports Common Formative Assessments Common Summative Assessments 	ed guided-inquiry learning • CER: Claim Evidence & Reasoning Data Analysis
--	---	---	--

Segment 3: Energy Conservation

3
 Ene
Conve

	Students track energy transfer and conversion
	through different stages of power plants. They
rgy	evaluate different power plant technologies.
rsion	They investigate electromagnetism to create
	models of how generators work and obtain and
	communicate information about how solar
	photovoltaic systems operate. They design and
	test their own energy conversion devices.

E.O. 5	Through CER summary paragraphs, lab analysis, & process activities.	Content Vocabulary/Concepts: Academic Vocabulary Describe Define Calculate Analyze Differentiate Apply Focused note taking Paragraph Summaries CER Organizer CER Summary Differentiated Critical Reading Strategies Problem Solving Graphic Organizers	Informal & Formal Assessments • Student Portfolios &/or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical Reading • Inquiry Labs • Lab Reports • Common Formative Assessments • Common Summative Assessments ,	Semester	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs Models POGIL: Process-orient ed guided-inquiry learning CER: Claim Evidence & Reasoning Data Analysis
E.O. 6	Through CER summary paragraphs, lab analysis, & process activities.	Common Key Content Terms or Vocabulary for each standard • Academic Language • Describe • Explain • Differentiate • Compare/Contrast	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated	Semester 1	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard

What is the essential standard to be learned? Describe in student-friendly vocabulary.	What does proficient student work look like? Provide an example and/or description.	What prior / concurrent / existing knowledge, skills, and/or vocabulary is/are needed for a student to master this standard?	What assessment(s) will be used to measure student mastery?	When will this standard be taught?	What will we do when students have learned the essential standard(s)?
STANDARD DESCRIPTION	EXAMPLE RIGOR	PREREQUISITE / CONCURRENT / EXISTING SKILLS	COMMON ASSESSMENT	WHEN TAUGHT ?	EXTENSION STANDARDS
Se	egment 4 4 Nucle Proces	Nuclear Processes and Students develop a mod structure of atoms and the the processes of fission, decay. They apply this non nuclear power and radio evidence from rock ages history of the Earth and its surface.	nd Earth History lel of the internal hen extend it to include fusion, and radioactive nodel to understanding metric dating. They use is to reconstruct the processes that shape		
		 Construct Model Replicate Focused Note taking Paragraph Summaries CER Organizer CER Summary Differentiated Critical Reading Strategies 	Critical Reading Inquiry Labs Lab Reports Common Formative Assessments Common Summative Assessments		 Virtual Labs Models POGIL: <i>Process-orient</i> <i>ed</i> <i>guided-inquiry</i> <i>learning</i> CER: Claim Evidence & Reasoning Lab Data Analysis

E.O 7	. Through summa paragra analysis dichoto classifie cladogr process activitie	h CER ry uphs, lab s omous key cation, rams & ss.	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical Reading • Inquiry Labs • Lab Reports • Common Formative Assessments • Common Summative Assessments • MAP Assessment Results	Semester 2	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs AP Extension activities POGIL: Process-orient ed guided-inquiry learning CER: Claim Evidence & Reasoning Data Analysis
E.O.	Throug summa paragra analysis process activitie	h CER ry aphs, lab s, & s s s s s s s s s s s s s s s s s s s	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical Reading • Inquiry Labs • Lab Reports • Common Formative	Semsterr 2	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs POGIL: Process-orient ed guided-inquiry learning

			Reading Strategies	Assessments • Common Summative Assessments , • MAP Assessment Results		CER: Claim Evidence & Reasoning Data Analysis
Segment 5 Waves and Electromagnetic Radiation 5 Students make mathematical models of waves and apply them to seismic waves traveling through the Earth. They obtain and communicate information about other interactions between waves and matter with a particular focus on electromagnetic waves. They obtain, evaluate, and communicate information about health hazards associated with electromagnetic waves. They use models of waves models of waves and the wave-particle duality.						
	STANDARD DESCRIPTION	EXAMPLE RIGOR	PREREQUISITE / CONCURRENT / EXISTING SKILLS	COMMON ASSESSMENT	WHEN TAUGHT ?	EXTENSION STANDARDS
	What is the essential standard to be learned? Describe in student-friendly vocabulary.	What does proficient student work look like? Provide an example and/or description.	What prior / concurrent / existing knowledge, skills, and/or vocabulary is/are needed for a student to master this standard?	What assessment(s) will be used to measure student mastery?	When will this standard be taught?	What will we do when students have learned the essential standard(s)?
E.O .		Through CER summary paragraphs, lab	Common Content Key Terms or Vocabulary for each standard Academic Language • Describe	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks	Semester 2	 Extension Activities Projects that are standard specific Enrichment activities Additional

	analysis, Punnet square construction and analysis & process activities.	 Explain Differentiate Compare/Contrast Determine Develop Focused Note taking Paragraph Summaries CER Organizer CER Summary Differentiated Critical Reading Strategies 	 Summary Paragraphs, Inquiry Labs Lab Reports Common Formative Assessments Common Summative Assessments , MAP Assessment Results 		Critical Reading / literature readings related to the standard • Virtual Labs • MAP Distance Activity • CHI Square Analysis • POGIL: <i>Process-orient</i> <i>ed</i> <i>guided-inquiry</i> <i>learning</i> • CER: Claim Evidence & Reasoning Data Analysis
	6 Stars a the Or of th Unive	Students apply their mod trace the flow of energy f and Earth. They use evidence igin stars and galaxies to det of stars and construct an origin of the Universe.	lel of nuclear fusion to from the Sun's core to e from the spectra of ermine the composition explanation of the		
STANDARD DESCRIPTION	EXAMPLE RIGOR	PREREQUISITE / CONCURRENT / EXISTING SKILLS	COMMON ASSESSMENT	WHEN TAUGHT ?	EXTENSION STANDARDS
What is the essential standard to be learned?	What does proficient student work look like?	What prior / concurrent / existing knowledge, skills, and/or vocabulary is/are needed for a	What assessment(s) will be used to	When will this standard	What will we do when students have learned the essential standard(s)?

	Describe in student-friendly vocabulary.	Provide an example and/or description.	student to master this standard?	measure student mastery?	be taught?	
E.O.		• Through CER summary paragraphs, lab analysis, & process activities.	Common Content Key Terms or Vocabulary for each standard: • Academic Vocabulary • Describe • Compare • Contrast • Differentiate • Explain • Hierarchy Focused Note taking Paragraph Summaries • CER Organizer • CER Summary Differentiated Critical Reading Strategies	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical Reading • Common Formative Assessment • Common Summative Assessment • MAP Assessment Results	Semester 2	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs Models POGIL: Process-orient ed guided-inquiry learning CER: Claim Evidence & Reasoning Data Analysis
E.O.		Through CER summary paragraphs, lab analysis, & process activities.	Common Content Key Terms or Vocabulary for each standard Academic Language • Describe • Explain • Differentiate • Compare/Contrast • Investigate Focused Note taking	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical	Semster 2	 Extension Activities Projects that are standard specific Enrichment activities Additional Critical Reading / literature readings related to the standard Virtual Labs

		El	Paragraph Summaries CER Organizer CER Summary Differentiated Critical Reading Strategies Microscope Technique	 Reading Inquiry Labs Lab Reports Common Formative Assessments Common Summative Assessments MAP Assessment Results 		 Models POGIL: <i>Process-orient</i> <i>ed</i> <i>guided-inquiry</i> <i>learning</i> CER: Claim Evidence & Reasoning Data Analysis
RST .11-12.1 WHST .9-12.2 (HS-LS1-1)	Cite specific textual evidence to support analysis of science and technical texts and annotating distinctions that the author makes and to any gaps or inconsistencies in data.	Students can Write informative/explan atory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. Through CER/Summary Paragraphs and Philosophical Chairs	Academic Language Describe Explain Differentiate Compare/Contrast Marking text Charting text Interacting with text Annotating text Focused Note taking Paragraph Summaries CER Organizer CER Summary Differentiated Critical Reading Strategies	Informal & Formal Assessments • Student Portfolios & or Interactive Notebooks • CER/Summa ry Paragraphs • Differentiated Critical Reading • Inquiry Labs • Lab Reports • Common Formative Assessments	Quarters 1-4	 Extension Activities Projects that are standard specific Enrichment activities Philosophical Chairs Additional literature readings related to the standard Online / Digital Critical Readings Marking and Charting Text and Rhetorical Precis.

Image Sources: National Highway Traffic Safety Administration2016; Black and Davis 1913, 242, fig. 200; NASA 2003a; Leaflet 2004; Wikimedia Commons 2011; Sorenson 2012; Jordan 2010; National Oceanic and Atmospheric Administration, National Centers for Environmental Information 2008b; Ezekowitz 2008; NASA, ESA, and the Hubble SM4 ERO Team 2009.